-21x^2+1800x-3200=0

Simple and best practice solution for -21x^2+1800x-3200=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -21x^2+1800x-3200=0 equation:



-21x^2+1800x-3200=0
a = -21; b = 1800; c = -3200;
Δ = b2-4ac
Δ = 18002-4·(-21)·(-3200)
Δ = 2971200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2971200}=\sqrt{1600*1857}=\sqrt{1600}*\sqrt{1857}=40\sqrt{1857}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1800)-40\sqrt{1857}}{2*-21}=\frac{-1800-40\sqrt{1857}}{-42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1800)+40\sqrt{1857}}{2*-21}=\frac{-1800+40\sqrt{1857}}{-42} $

See similar equations:

| -x+14=-4x+20 | | 3x+22=-2x+52 | | 2x+13=8x-29 | | -5x+16=-3x-4 | | -x+13=3x+9 | | 160-3x=0 | | 4x-9=-x-19 | | 5(g-4)-3g=1-g | | 10d-2=15 | | 12–(3x–4)=31+2x | | 7c=5=40 | | 5x−9=7 | | 19=3+4k | | 40=4(x-1) | | 3(2t-4)=18 | | 2x+1.1=30.3 | | 8+v=14 | | 5/6=1(12v | | 1025=3x+125 | | 5+x-4x=1 | | 4+t+3=19 | | 2+8y=37 | | 2/5x65=x | | -100=-4x-23 | | 2/4x65=x | | 23=-4x-23 | | (2x+3)*(2x+3)=49 | | 4x^2+12x=43 | | 8x+3x=6x-10 | | 1=-4x-23 | | -9(x-6)=-11(x-5) | | 6=12-6x |

Equations solver categories